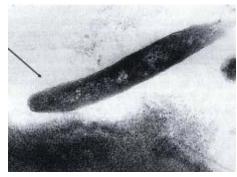
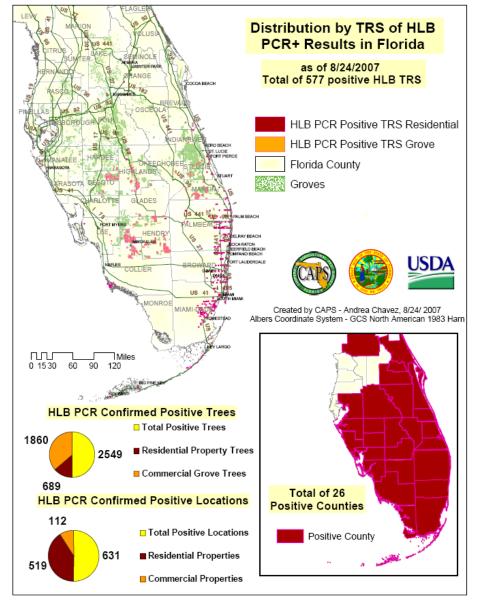
Mechanism for Release of Genetically-modified Citrus

Greg McCollum USDA, ARS, USHRL Fort Pierce, FL


The problem...



Management strategies for HLB

Vector control

Clean nursery
 stock

Rouging infected trees

The most viable option for dealing with citrus greening:

TRANSGENICS

Programs to develop disease resistant citrus via transgenics

- US public sector
- √USDA, ARS, USHRL
- ✓ Univ. of Florida
- √Texas A&M
- **✓ Univ. Calif.**
- US private sector?
- Brazil public sector
- Brazil private sector
- ✓ Allelyx

Host plant resistance is the ideal disease management strategy

- Highly effective (when available)
- Environmentally benign
- No reliance on pesticides
- Little or no additional expense to producers

Unfortunately... conventional breeding for HLB resistance is not a viable option

- No documented resistance to greening among edible citrus types
- Citrus latipes and Citrus indica may have some resistance – BUT THEY ARE NOT COMMERCIALLY ACCEPTABLE

- Time to incorporate resistance by traditional breeding is too long
- Best case scenario 20 years
- Very unlikely to produce an acceptable product

- Citrus sinensis is not amenable to traditional breeding.
- Sweet oranges are clonal propagules of an ancient natural hybrid.
- It has not been possible to recreate sweet oranges by breeding.

A transgenic approach is the most viable option to develop citrus with resistance to HLB

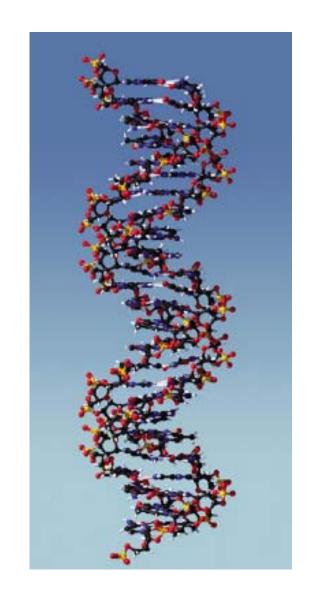
- Many potential sources of resistance
- Change a single trait
- Much less time required than conventional breeding

Transgenics have proven successful for other fruit crops

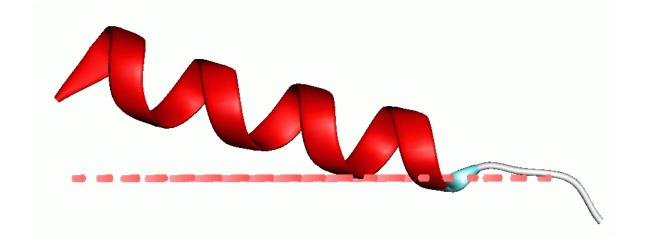
Papayas
Papaya ring spot
Viral disease

Apples
Fire blight
Bacterial disease

Plums
Plum pox
Viral disease


What is a "transgenic" plant?

 A plant with one or more genes that have been transferred into it from another organism.


What is a "gene"?

- The basic biological unit of heredity.
- A segment DNA needed to contribute to a function.
- Most genes encode proteins.

What is a "protein"?

- A molecule composed of amino acids linked together in a particular order specified by a gene's DNA sequence.
- Some proteins have ANTIBACTERIAL activity.

What genes should be transferred into citrus?

- Antibacterial peptides (small proteins)
- Found in many species
 - > 700 have been identified in numerous organisms
- Some common characteristics
 small (30 50 amino acids)
 multiple lysine and arginine residues
 amphipathic nature (+ and -)
- Mechanism of action not clearly understood

Examples of antibacterial peptides:

 Magainins - secreted by the skin of Xenopus laevis

- Cecropins haemolymph of Hyalophora cecropia
 - Attacin, Sarcotoxin, Diptericin

Defensins - from various plant species

Fig. 3. Resistance to rice blast disease in transformant by introduction of defensin gene A: Non-transformant. B: Transformant. C: Non-transformant, not infected.

Brazilians have reported on transgenic 'Hamlin'

J. AMER. Soc. HORT. Sci. 131(4):xxx-xxx. 2006.

Attacin A Gene from Tricloplusia ni Reduces Susceptibility to Xanthomonas axonopodis pv. citri in Transgenic Citrus sinensis 'Hamlin'

Raquel L. Boscariol

Universidade de São Paulo, Centro de Energia Nuclear na Agricultura, 13400-970, Piracicaba/SP, Brazil

Mariza Monteiro, Elizabete K. Takahashi, Sabrina M. Chabregas, and Maria Lucia C. Vieira Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", 13418-900, Piracicaba/ SP, Brazil

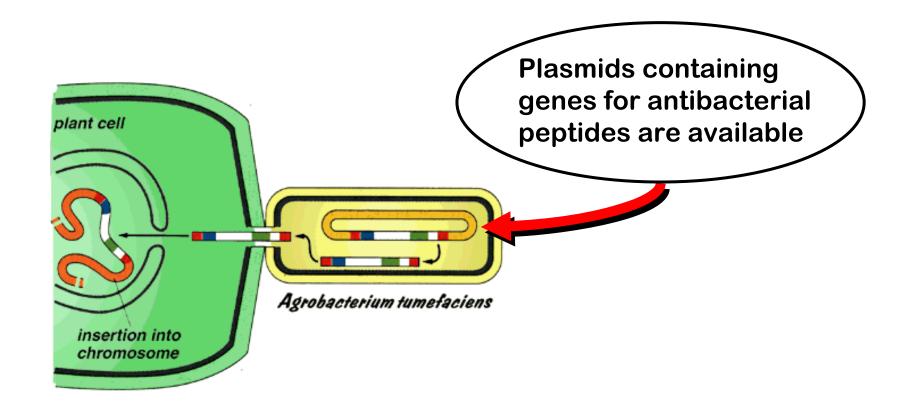
Luiz G.E. Vieira and Luiz F.P. Pereira

Instituto Agronômico do Paraná, 86001-970, Londrina/PR, Brazil

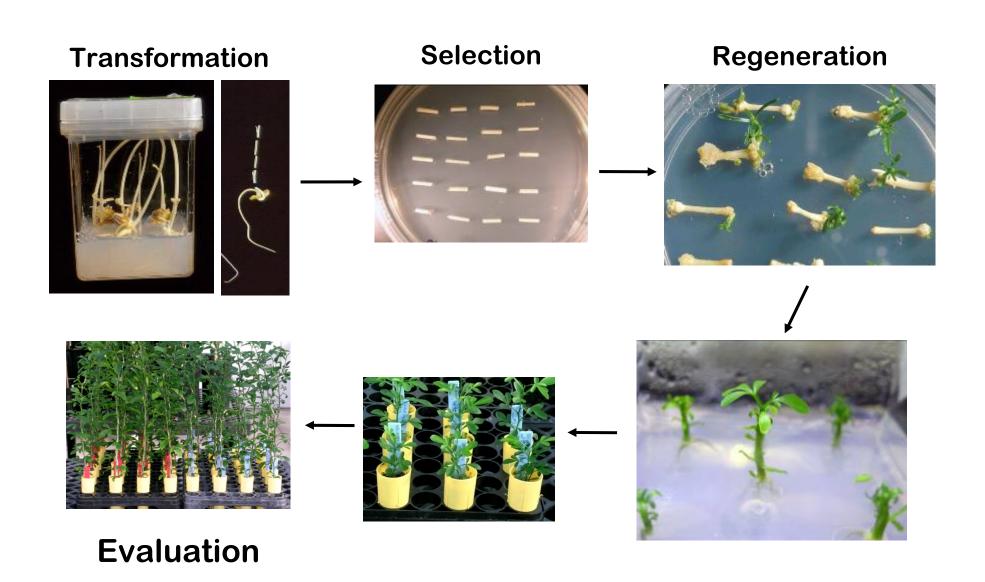
Francisco de A.A. Mourão Filho, Suane C. Cardoso, Rock S.C. Christiano, Armando Bergamin Filho, Janaynna M. Barbosa, and Fernando A. Azevedo

Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", 13418-900, Piracicaba/ SP, Brazil

Beatriz M.J. Mendes¹


Universidade de São Paulo, Centro de Energia Nuclear na Agricultura, 13400-970, Piracicaba/SP, Brazil

Antimicrobial peptides are a good option because...


- They have proven successful
- They are single gene products
- They are robust (resistance is unlikely)

How are genes transferred from one organism to another?

Agrobacterium – a plant pathogen with the capacity to transfer DNA

Citrus Transformation

Infrastructure is in place

Laboratories

Growth chambers

Greenhouses

Secure farm sites with ample space

Science is most likely easier than implementation...

"Transgenic crops face a daunting array of pre-commercialization regulatory requirements and post-commercialization market restrictions"

Bradford et al. 2005 Nature Biotechnology

Obstacles to commercialization of transgenic citrus

- Regulatory
- Intellectual Property
- Social

These obstacles are not insurmountable, but require large amounts of money to overcome.

Reasons for regulating transgenic crops

- Human safety
- Protect the environment
- Avoid fraud
- Social/ethical
- Product/process
- Public concern

Potential human health hazards

- New allergens or toxins
 - edible product
 - pollen
- Plieotropic effects of new protein combinations

Potential environmental hazards

- Movement of transgene/expression in a different organism
- Hazards associated directly or indirectly with the plant as a whole
- Non-target hazards outside the plant
- Resistance evolution in targeted pest

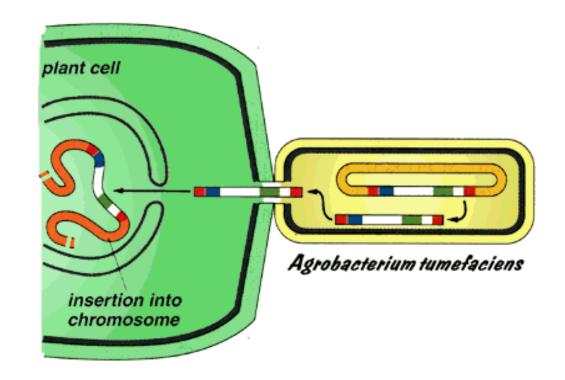
US Agencies with Regulatory Authority for Transgenic Crops

USDA-APHIS

- √ Release into the environment
- ✓Interstate transport
- **√Import**

EPA

✓ Plants expressing a "pesticide"

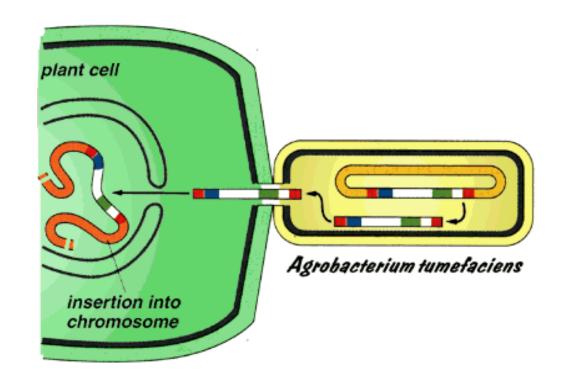

FDA

√ Food-safety

Agrobacterium-mediated transformation

USDA – APHIS

- Plant Pest Act
- Notification and Permitting
- Non-regulated status


Agrobacterium – is (was) a plant pathogen

Novel genes – may be derived from plant
pathogens

Agrobacterium-mediated transformation

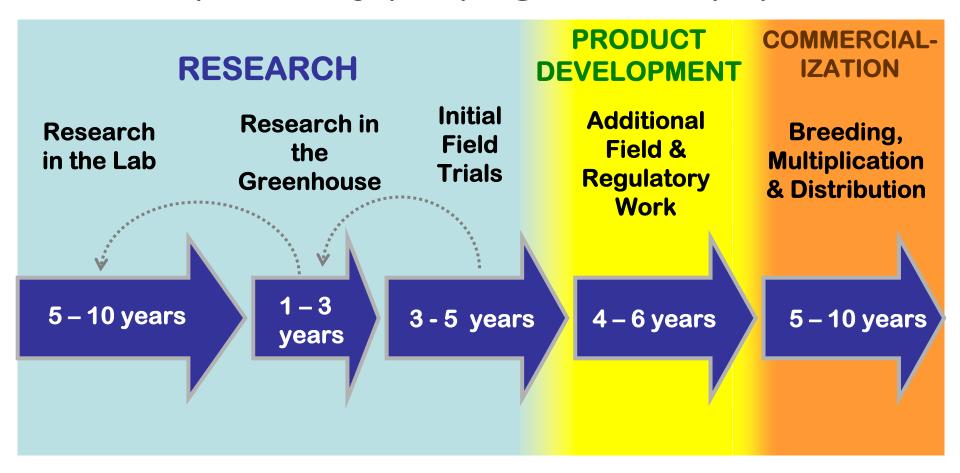
US – EPA •FIFRA

- ✓ Pesticides
- ✓ Environmental
- •FFDCA
 - √ Food safety

Plant-Incorporated Protectants (PIPs)
Limited to the pesticidal protein, not whole plant

Food Safety of All Transgenic Crops

FDA


- •FFDCA
- Not the PIP
- Not "food additives"
- Voluntary consultation process
- •Culminates with "no further questions...at this time"

What are the compliance costs for regulatory approval of new transgenic crops?

- Information not readily available
- Estimates for transgenic maize
 - ✓Insect-resistant: \$7-15 Million
 - ✓ Herbicide-tolerant: \$6-14 Million

These costs will most likely decrease as more and more GM-crops are developed

Timeline for Development of Transgenics (Sexually propagated crops)

------18 – 34 years-----

All <u>commercial</u> transgenic crops have been developed by large and mid-sized corporations

Exceptions:

- Virus-resistant papayas
 Commercialized in Hawaii
- Virus-resistant plums
 Non-regulated status
 Not yet commercialized

Comparing Oranges, Papayas and Plums

Papayas

Specialty crop

Very small acreage

Viral disease

Infrequent in diet

Hawaii

Plums

Specialty crop

Small acreage

Viral disease

Infrequent in diet

California/US

Citrus

Specialty crop

Large acreage

Bacterial disease

Frequent in diet

Florida /California

Timeline for GM Papayas

- 1985 Effort to develop GM-papaya begins
- 1989 Transformation begins
- 1991 1st transformant identified
- 1992 1st field trial / PRSV found
- 1994 PRSV eradication abandoned
- 1995 Commercial field trial success
- 1996 Parent line deregulated by APHIS

Timeline for GM Papayas

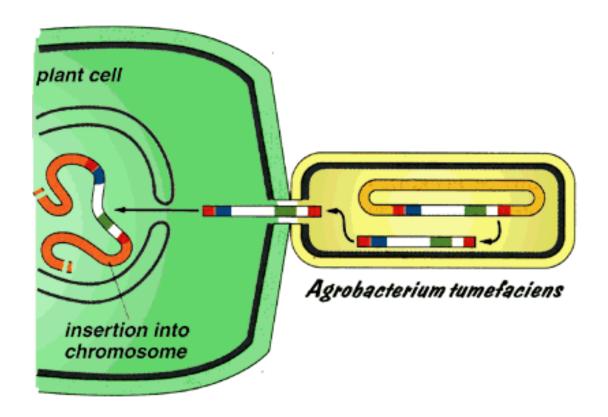
- 1997 Deregulation by EPA / FDA consultation completed
- 1999 Widespread commercial planting

Timeline for GM Plums

- 1989 Work initiated on development of transgenic plums
- 1996 1st field trials established in EU and US (under APHIS permit)
- 2002 Field trails confirm resistance
- 2003 Consultation with regulators begins
- 2006 App. for non-regulatory status
- 2007 Non-regulated status approved

Time frame for producing transgenic citrus

- 12 months Transformed plants
- 18 months Transformants propagated
- 24 months Disease screening
- 36 months Field ready transgenics


Intellectual Property

- Four firms (and subsidiaries)
 - **✓** Bayer Cropscience
 - **✓ DuPont**
 - ✓ Monsanto
 - ✓ Syngenta
- Own or co-own 80% of all biotech traits that have received regulatory approval

Agrobacterium - mediated transformation

Numerous patents

- Transformation system
- Genes of interest

Will the public accept transgenic citrus?

- Not a question for researchers to answer.
- Evidence suggests increasing acceptance of other GMOs.
- Brazil is moving ahead with transgenic citrus.
- Given the choice between transgenic citrus or no citrus?

Transgenic citrus regulatory discussions

- Sept 17-18
- Meeting in Beltsville, MD
- Citrus researchers, industry representatives, regulators
- Develop a plan for moving forward with transgenic citrus

Summary

- Transgenic citrus offers the best strategy for dealing with HLB
- Significant regulatory and social obstacles
- Experience with papayas and plums suggests that obstacles can be overcome